Finite Population Trust Game Replicators

Garrison Greenwood!, Hussein Abbass?, and Eleni Petraki®

! Electrical and Computer Engineering Department, Portland State University, Oregon, USA.
2 University of New South Wales, School of Engineering and Information Technology,
Canberra, ACT 2600, Australia**.

3 Faculty of Arts and Design, University of Canberra Canberra, Australia.
{greenwd@pdx.edu, h.abbass@adfa.edu.au, Eleni.Petraki@canberra.
edu.au}

Abstract. Our previous work introduced the N player trust game and examined
the dynamics of this game using replicator dynamics for an infinite population. In
finite populations, quantization becomes a necessity that introduces discontinuity
in the trajectory space, which can impact the dynamics of the game differently.
In this paper, we present an analysis of replicator dynamics of the /N player trust
game in finite populations. The analysis reveals that, quantization indeed intro-
duces fixed points in the interior of the 2-simplex that were not present in the in-
finite population analysis. However, there is no guarantee that these fixed points
will continue to exist for any arbitrary population size; thus, they are clearly an
artifact of quantization. In general, the evolutionary dynamics of the finite pop-
ulation are qualitatively similar to the infinite population; which suggests that
for the proposed trust game, trusters will be extinct if the population contains an
untrustworthy player. Therefore, trusting is an evolutionary unstable strategy.
Keywords: Trust, Evolutionary Game Theory, N-Person Trust Game

1 Introduction

Human interaction is a complex process. Despite being the focus of extensive inves-
tigation for decades, a number of questions remain without adequate answers. Social
dilemmas are particularly interesting. Social dilemmas arise whenever short-term, indi-
vidual interests must be weighed against long-term, collective interests.

Game theory is a useful vehicle for studying social dilemmas. Players compete
against each other using strategies to make decisions. They receive payoffs (rewards)
for the decisions they make and their competitors make. Good strategies return high
rewards. Theories can be postulated to explain how strategies might evolve over time
and computer models can be constructed to generate empirical evidence to support or
disprove these theories [9, 3, 15].

Consider a game with m strategies and let p; be the frequency of strategy ¢ in the
population. At any given time the state of the population is given by p € Sy,. If p;
is a differential function of time, then the evolution of strategies in the population can
be expressed using replicator equations [8]. (Differentiability assumes the population
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is infinitely large.) Each replicator equation is a 1st-order differential equation. Under
replication dynamics individuals do not change strategies via mutation nor by some
contrived procedure such as a Moran process [10]. Instead, strategies change frequency
following Darwinian theory—i.e., reproductive success is directly proportional to fit-
ness. Individuals with above average fitness grow in the population over time while
those with below average fitness die out.

Usually the N player games studied this far only have a small number of strate-
gies (typically m < 4). Most of these games study cooperation in populations and try
to discover human characteristics that promote cooperation. These games model social
dilemmas where mutual cooperation is the best outcome for the group, but individual
self-interest always pays better, leading to the undesirable outcome where ultimately
everyone defects. Empirical evidence from these IV player games suggest that several
mechanisms such as reciprocity and kin-selection promote cooperation in human pop-
ulations [11].

One aspect of human interaction that has been extensively investigated in the past
is trust and the role it plays in society. Schmueli ef.al. [14] maintain that the concept of
trust is pervasive in social relationships and it has a great impact on social persuasion
and behavioral change. Their experiment revealed that trust was significantly more ef-
fective than the closeness of ties in determining the amount of behavior change, with
respect to individual fitness. High levels of trust have shown to impose social controls in
political and economic institutions thereby increasing accountability, productivity and
effectiveness [13].

Nevertheless, evolutionary game theoretical studies on trust are lacking and those
that have been conducted were limited to 2 players. (See [12] for a notable exception.)
Recently this situation changed when Abbass et. al [1] introduced a game specifically
designed to investigate the role of trust in human populations. Players in this game make
two choices in advance: whether to be trustworthy or not and whether to be an investor
or be a trustee. Each investor contributes an amount tv. A trustworthy trustee returns an
amount R1 > 1 to the investor (and keeps an equal amount for herself) whereas an un-
trustworthy trustee keeps the contribution and returns nothing. The game is designed as
a social dilemma. Replicator dynamics indicate that the inevitable outcome is when the
population converges to state with a mixture of trustworthy and untrustworthy players
and no investors.

Replicators equations provide valuable insights into how strategies evolve in a pop-
ulation. Their limitation is the assumption of an infinite population. Nature does not
produce infinite populations. Indeed, human populations are always finite for a variety
of reasons such as geographical isolation or cultural restrictions. More importantly, it
has been conclusively shown that, when comparing infinite population dynamics and
finite population dynamics, the latter have qualitatively different results [4, 6, 5]. This
issue is important because the trust game results reported in [1] were obtained using an
infinite population model.

In this paper, we extend our previous work by studying finite population models
using a discrete form of replicator equations and report the findings. Our results indi-
cate the finite population dynamics are remarkably similar to those found in the infi-
nite population. However, the discrete replicator equations do require quantization and
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Table 1. Utility matrix for a N-player trust game.

Player in the k; population Player in the k> population Player in the k3 population

Pay tv Rl -tv- k;fﬁka 0
. k k k
Receive R1-tv - szks 2-R1-tv- k2+1k3 R2 - tv - k2+1k3
k k k
Net Wealth  tv - (R1 - ﬁ -1) R1-tv- kz_ﬁkg R2 - tv- kz-',-lk;;

quantization effects introduce additional fixed points not found in the infinite popula-
tion models. Surprisingly, these fixed points appear and disappear as a function of the
population size. We provide an analysis of this phenomenon.

This paper is organized as follows. In Section 2 the trust game is formally defined
and an overview of the infinite population replicator dynamics is given. Section 3 de-
velops the replicator equations for the trust game with finite populations. Section 4
analyzes the finite population results. Finally, Section 5 summarizes our findings and
discusses future work.

2 Background

This section gives a formal definition of the IV player trust game and a brief overview
of the infinite population replicator dynamics. See [1] for more detailed information.

2.1 The N Player Trust Game

Assume N players. Each player makes two decisions in advance: (1) whether or not
to be trustworthy, and (2) whether to be an investor or a trustee. Let k; be the number
of investors, ko the number of trustworthy trustees and k3 the number of untrustworthy
trustees. The obvious restriction is ), k; = N.

An investor player pays tv to the trustee, where tv > 0 denotes the trusted value.
The dynamics of the game does not depend on the value of tv. However, we maintain
tv to allow flexibility in adopting the game to different contexts. With k; governed
players, the total money contributed is (k; - tv). Each trustworthy trustee returns to an
investor a multiplier of R1 of what was received and keeps the same amount for herself,
with R1 > 1. An untrustworthy trustee returns nothing but instead keeps for herself a
multiplier of R2 of what was received, where R1 < R2 < 2R1. The payoff matrix for
this game can then be represented as shown in Table 1 with the following constraints:

1<RlI<R2<2R1

N =Fki +ko+ ks



4 Greenwood, Abbass, & Petraki

2.2 Infinite Population Replication Dynamics

The evolutionary behavior of a population playing the trust game can be studied using
replicator dynamics. Let y; be the frequency of players using strategy ¢ in an infinitely
large population with ), y; = 1. Then the time evolution of y; is given by the differ-
ential equation

yi:yi'(fi_f> (H

where f; is the expected fitness of an individual playing strategy ¢ at time ¢ and f is
the mean population fitness. Here, fitness and net wealth are equivalent. The number of
copies of a strategy increases if f; > f and decreases if f; < f. We can calculate f as
follows

p_ Y1y tv(2-RI—1) 4y -ys-tv- (R2-1)
f =
(y2 +y3)
The three replicator equations are
. yi - tv y1 - tu
o= (y2(1—2-R1) +y3- (1 - R2)) + (y2 (R1 —1) — y3)
L= L=
. - to
Go = %~(y2(1—2-R1)+y3(1—R2)+R1)
. - to
g3 = %-(y2<1—2-R1>+y3<1—Rz>+R2>

Figure 1 shows the population evolution for various initial player distributions. Fig-
ure 2 shows the effect of different R1 and R2 values (but with R1 < R2). The replicator
equations predict a rapid growth of untrustworthiness in the population, leading to the
eventual extinction of investors. However, a fraction of the population always remains
trustworthy, even in the absence of investors. This predicted steady-state outcome is in-
dependent of the initial player distribution, but the ratio of trustworthy to untrustworthy
players in the final population is dependent on the R1 and R2 values.

3 Finite Population Replicator Dynamics

The population dynamics depicted in Figure 1 and predicted by (1) apply only to in-
finite size populations. It has been conclusively shown that finite population dynamics
can be qualitatively different from those of infinite populations [4, 6, 5]. It is therefore
important to see if and, if so, how the dynamics of the trust game change for finite
populations. Replicator equations can still be used to predict how a population evolves
although, as will be shown shortly, the equation format is different.

Let N be the (finite) population size and k;, ¢ = {1, 2, 3} be the number of players
choosing strategy 7. The frequency of players choosing strategy i at time ¢ is pt = k;/N.
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Fig. 1. A 2-simplex showing the time evolution for a game with R1 = 6, R2 = 8§, tv = 10, and
different initial distributions of y1, y2» and y3. (Reproduced from [1])
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Fig.2. A 2-simplex showing the time evolution for a game with tv = 10 and different R1 and
R2 values (R1 < R2). Values increase from left to right with R1 = 1.5, R2 = 2.9 for the far
left trajectory to R1 = 6, R2 = 8 for the far right trajectory. Initial distribution is y1(0) = 0.1,
y2(0) = 0.8, and y3(0) = 0.1.(Reproduced from [1])

With finite populations, the discrete replicator equations are now expressed as a set of
first order difference equations

pit! = plF! 2)
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where F! = f; / ft with f* the mean fitness at time ¢. F; > 1 means the proportion of

strategy ¢ in the population grows, F; < 1 means it shrinks and F; = 1 itis at a fixed
point. Unfortunately, the discrete form of the replicator equations introduces a couple
of problems not found in the infinite population case.

The first problem is with the definition of fitness. Fitness is equated to net wealth in
both the infinite population case and the finite population case. Substituting p! = k; /N
into the net wealth equations and simplifying yields the following finite population
fitness equations

t
fl=tu (R1 o — 1)
t

t __

f2 =tv-Rl- Pétlpg (3)
t o

fs=tv- R2 i

The problem is f; won’t be positive for all strategy frequencies. Unlike with differ-
ential equations, negative fitness values are not permitted in discrete replicator equations
i1 < 0. Moreover, f* cannot equal zero. We therefore slightly

because this makes p;
modified the fitness values as shown below.

ek 1
b= l<ex1 1f,€2+2]€3§m
! tv - (R1~ k;ffks — 1) otherwise

“4)

— k
fo=tv- Rl ki

— k
fg—tU'R2~k2_ﬁk3

The second problem involves trajectories in the 2-simplex. In the finite population
case each p! = k;/N. This means there are only a finite set of feasible points in the 2-
simplex (see Figure 3). Any trajectory must therefore consist of straight line segments
between pairs of feasible points.

Clearly, the right-hand side must be an integer. This means only a finite set of points in
the simplex can be visited—i.e., points where p! = k; /N. These points for N = 20 are
shown in Figure 3.

The p; values have to be quantized to make sure only integer values for k‘EH are
produced. The quantization method described in [2] is used here. The algorithm below
returns k; which is the new number of players choosing the i-th strategy.

1. Compute
K=|Npi+i| . N =K

2. Letd = N’ — N.If d = 0, then go to step 4. Otherwise, compute the errors
3. If d > 0, decrement the d k.’s with the largest ¢; values. If d < 0, increment the |d]
k;’s with the smallest ¢; values.
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Fig.3. A 2-simplex for a finite population with N = 20. Only the points shown represent an
integer number of strategies in the population. Any trajectory must move between these points.
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Fig. 4. A velocity plot for a finite population with N = 20, R1 = 6, R2 = 8 and tv = 10. (c¢.f.
Figure 1)

4. Return [k} kb k%] and exit.

Figure 4 shows a velocity plot for a finite population with N = 20, R1 = 6, R2 =8
and tv = 10. The vectors are shown as unit vectors because the direction is of impor-
tance here and not the magnitude. These finite population replicator dynamics are the
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analog of the infinite population replicator dynamics shown in Figure 1. Notice the finite
population dynamics are remarkably similar including the presence of an attractor.

4 Discussion

The finite population trust game has a Nash equilibrium at k3 = IV and a Pareto optimal
distribution at k; = N — 1, ky = 1. (See [1] for proofs.)

Many of the fixed points in the finite population are the same as those in the infinite
population. For example, in the infinite population the three 2-simplex corners and every
point on the ps — ps line is a fixed point. Similarly in the finite population model the
three 2-simplex corners are fixed points but only a finite number of points on the ps —ps
line are fixed points—i.e., the N 4 1 points where p; is a rational number. The infinite
population model also has a fixed point at

 RI-1
YTy RI—1
R
V2= 9 RI—1
y3 =0

With R1 = 6 in our example, the fixed point is, p = [5/11 6/11 0/11]. In the finite
model this fixed point varies (due to quantization) but it is the rational number closest
to p.

Figure 5 shows a magnified view of a portion of the p; — po line. Notice there are
two fixed points that do not appear in the infinite population mode. Consider the fixed
point at [p1 p2 ps] = [0.450 0.550 0.000] (equivalently, [k1 k2 ks3] = [9 11 0]). That
population mixture yields fitness values of f; = 50, fo = 49.09, f3 = 0.0 and a mean
population fitness of f = 49.499. The discrete replicator equations predict no change
in the population mixture. It is also worth mentioning the fixed point on the p; — po
line at [p1 p2 ps] = [0.450 0.550 0.000] matches well to the fixed point in the infinite
population at [p; p2 p3] = [0.455 0.545 0.000].

To understand why the finite population has fixed points which are not present in in-
finite populations it is important to understand how quantization actually works. Quan-
tization is a form of data compression. It maps an entire range of real numbers into
a single value, which subsequently represents any real number in the range that was
mapped.

For the trust game quantization must map real numbers into integers. To see why
this is necessary substitute p! = k!/N into the discrete replicator equation. After mul-
tiplying both sides of the equation by NV

kT = ki F (5)

Clearly the left-hand side must be an integer but the right-hand side typically won’t be
because F! = f}/ ft is a real number. The quantization process described previously
was specifically picked because it maps a real number into an integer. However, there
is no guarantee quantizing three frequencies that sum to 1.0 will produce three integers
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Fig. 5. A magnified portion of the 2-simplex for N = 20. The distribution of strategies is shown
for the three fixed points. The fixed point with distribution [0.45 0.55 0.0] corresponds to a sim-
ilar fixed in the infinite population module. The other two fixed points are a consequence of
quantization (see text).

that sum to N—unless a repair mechanism is incorporated into the quantization process
to enforce this constraint.

Each iteration of the discrete replicator equation updates the number of strategies
in the population. Thus update is a mapping from I — I. Unfortunately the right-hand
side of (2) is rarely an integer. Quantization will produce an integer right-hand side of
the replicator equation but this process introduces some fixed points not present in the
infinite population model. To understand how these fixed points arise it is necessary to
take a more detailed look at the quantization process.

Step 1 of the quantization process computes the new number of the -th strategy:

= N+ 3]

kit | 1

[NRF + 3] (6)
t 1
ki FY + 3]

where the integer floor is necessary to make sure &} is an integer. It is easy to show
k; — K. as follows

<k if F} <1 -1/,
ki=2< >k if B} > 1+ 1), @)
= k; otherwise

The new sum ), ki = N’ is calculated and then compared with V. Obviously no
adjustment is required if N’ = N. However, if N’ # N then some k; values must be
incremented (if N < N) or decremented (if N’ > N). This adjustment is done in
steps 2 through 4 of the quantization process. Which ones get incremented or decre-
mented depends on the J; error values: those with the largest errors are decremented
and those with the smallest errors get incremented. Thus, the only role of the §; values
is to identify which k’s must be adjusted to make N’ = N.

Now consider the upper fixed point highlighted in Figure 5 where N = 20. The
population mixture is [p1 p2 ps] = [0.4 0.5 0.1] at that simplex point. The correspond-
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ing fitness values are [f1 fo fs] = [40 40 53.33] and the mean fitness is f = 41.33.
Consequently Ff = Fi = 0.967 and F} = 1.29. Thus,

1. K} =k because 0.967 £ 1 — 1= and 0.967 # 1 + +=.
2. kb = ko because 0.967 £ 1 — % and 0.967 # 1+ %-
3. kb > k3 because 1.29 > 1+ ;. (Note: k3 = 2and [1.29 -2+ 1| = [3.08))

Readjustment is necessary because >, k; = 21 > N. Step 3 of the quantization
algorithm implements the repair mechanism. Specifically, in this case d = +1 and 3
is larger than &7 or d2. Thus k3 is decremented once, which makes k; = k3. Now
>_; ki = N and fixed point is created since none of the ;s changed. A similar analysis
can be done for the fixed point with the distribution [0.45 0.5 .05].

The fixed points in the interior of the 2-simplex caused by quantization will change
as N increases and they completely disappear as N — oo. To investigate this phe-
nomenon a simulation was run with NV = 40. Figure 6 shows a magnified portion of the
2-simplex. The fixed point with distribution [0.45 0.55 0.0] remains and will never dis-
appear as N increases. Notice a new fixed point appeared at distribution [0.45 0.525 .025].
More importantly, the fixed point at distribution [0.4 0.5 0.1}, which was a fixed point
when N = 20 is no longer a fixed point when N = 40. An analysis conducted as done
above will explain why. The same fitness values exist but now the new strategy numbers
are as follows

1. K} < ki because 0.967 < 1 — 35. (ky = 16; k| = 15)
2. kb < kg because 0.967 < 1 — 5. (ke = 20; k) = 19)
3. kb > ks because 1.29 > 1+ £. (ks = 4; k = b)

Readjustment is necessary because ) . k; = 39 < N. From step 2 of the quantization
algorithm §; = —0.472,5, = —0.34,63 = —0.16 and d = —1. §; is the smallest so
K} is increased from 15 to 16 making the number of strategies total to N. The simplex
point with strategy distribution [0.4 0.5 0.1] is no longer a fixed point when N = 40
because kb # ko and k% # ks.

One area where the finite population replicator dynamics differs markedly from the
infinite population dynamics is the region in the 2-simplex near the p» vertex (see Figure
7). The presence of an attractor is obvious but, unlike the infinite population case, the
fixed points on the py — p3 axis are not unique (c.f., Figure 2). Most likely this is another
effect of quantization.

5 Summary

In this paper we have extended our previous work on the N player trust game by study-
ing finite population effects. The discrete replicator equations impose certain restric-
tions including the necessity of quantization. Quantization introduces fixed points in
the interior of the 2-simplex but these disappear (and other may take their place) as N
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Fig. 6. A magnified portion of the 2-simplex for N = 40. The distribution of strategies is shown
for the three fixed points. The fixed point with distribution [0.45 0.55 0.0] corresponds to a similar
fixed in the infinite population module. The other fixed point is a consequence of quantization (see
text).

/ %R e R
gyl ) % A TR

Fig. 7. A magnified portion of the 2-simplex for N = 40. (c.f., Figure 1)

varies. Nevertheless, the finite population evolution is qualitatively similar to the infinite
population. This research extended previous research on computational measurement of
trust by using game theory in both finite and infinite populations.

The replicator equations describe strategy evolution based on Darwinian principles—
i.e., fitness based evolution. In particular no mutation is permitted. It will be interesting
to see if trust persists when individuals are allowed to modify their strategy. Trust is
the foundation of all human interactions regardless of who is involved or the duration
of the encounter. This suggests emotions may play a role in whether or not individuals
are seen as trustworthy and, if so, for how long. Greenwood [7], has previously shown
emotions such as guilt can affect cooperation levels in social dilemmas. In our future
work we intend to see how emotions may affect trust levels in social dilemmas.
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